
librosa — librosa 0.11.0 documentation
librosa librosa is a python package for music and audio analysis. It provides the building blocks necessary to create music information retrieval systems. For a quick introduction to using …
Tutorial — librosa 0.11.0 documentation
This section covers the fundamentals of developing with librosa, including a package overview, basic and advanced usage, and integration with the scikit-learn package.
Librosa
View on GitHub audio and music processing in Python Documentation See https://librosa.org/doc/ for a complete reference manual and introductory tutorials. We also have a developer blog. …
Installation instructions — librosa 0.11.0 documentation
Installation instructions pypi The simplest way to install librosa is through the Python Package Index (PyPI). This will ensure that all required dependencies are fulfilled. This can be achieved …
Feature extraction — librosa 0.11.0 documentation
Feature extraction Spectral featuresRhythm features
Advanced examples — librosa 0.11.0 documentation
Enhanced chroma and chroma variants Laplacian segmentation Using display.specshow Download all examples in Python source code: auto_examples_python.zip Download all …
librosa.feature.melspectrogram — librosa 0.11.0 documentation
If numeric, use librosa.util.normalize to normalize each filter by to unit l_p norm. See librosa.util.normalize for a full description of supported norm values (including +-np.inf).
Audio playback — librosa 0.11.0 documentation
If you’re working with long signals, or do not want to load the signal into python directly, it may be better to use one of these modes. Audio playback, by default, will normalize the amplitude of …
librosa.load — librosa 0.11.0 documentation
Any string file paths, or any object implementing Python’s file interface (e.g. pathlib.Path) are supported as path. If the codec is supported by soundfile, then path can also be an open file …
librosa.cqt — librosa 0.11.0 documentation
librosa.cqt librosa.cqt(y, *, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', …